pygmt.clib.Session.virtualfile_from_grid
- Session.virtualfile_from_grid(grid)[source]
Store a grid in a virtual file.
Use the virtual file name to pass in the data in your grid to a GMT module. Grids must be
xarray.DataArray
instances.Context manager (use in a
with
block). Yields the virtual file name that you can pass as an argument to a GMT module call. Closes the virtual file upon exit of thewith
block.The virtual file will contain the grid as a
GMT_MATRIX
with extra metadata.Use this instead of creating a data container and virtual file by hand with
pygmt.clib.Session.create_data
,pygmt.clib.Session.put_matrix
, andpygmt.clib.Session.open_virtual_file
The grid data matrix must be C contiguous in memory. If it is not (e.g., it is a slice of a larger array), the array will be copied to make sure it is.
- Parameters
grid (
xarray.DataArray
) – The grid that will be included in the virtual file.- Yields
fname (str) – The name of virtual file. Pass this as a file name argument to a GMT module.
Examples
>>> from pygmt.datasets import load_earth_relief >>> from pygmt.helpers import GMTTempFile >>> data = load_earth_relief(resolution="01d") >>> print(data.shape) (180, 360) >>> print(data.lon.values.min(), data.lon.values.max()) -179.5 179.5 >>> print(data.lat.values.min(), data.lat.values.max()) -89.5 89.5 >>> print(data.values.min(), data.values.max()) -8182.0 5651.5 >>> with Session() as ses: ... with ses.virtualfile_from_grid(data) as fin: ... # Send the output to a file so that we can read it ... with GMTTempFile() as fout: ... args = f"{fin} -L0 -Cn ->{fout.name}" ... ses.call_module("grdinfo", args) ... print(fout.read().strip()) ... -180 180 -90 90 -8182 5651.5 1 1 360 180 1 1 >>> # The output is: w e s n z0 z1 dx dy n_columns n_rows reg gtype